國立臺北大學 108 學年度日間學士班轉學生招生考試試題

學制系級:統計學系日間學士班2年級

科 目:微積分

第1頁 共1頁□□□ ☑不可使用計算機

- 1. Let f(x) be a polynomial of degree 3.
 - (a) (10%) If f(1) = 18 is a relative maximum and f(-3) = -14 is a relative of minimum f, please find f(x).
 - (b) (5%) Find the value of k so that (k, f(k)) is a point of inflection of f(x).

2. Let
$$f(x) = \begin{cases} \frac{\ln x}{x-1}, & x \neq 1 \\ 1, & x = 1 \end{cases}$$
.

- (a) (7%) Show that f is continuous at 1.
- (b) (8%) Show that f is differentiable at 1.

3. (a) (6%) Let
$$\frac{d}{dx} f(x) = e^{-x^2}$$
. Find $\frac{d}{dx} f(\sqrt{x})$, where $x > 0$.

- (b) (7%) Let $f(x) = x^3 + x + 1$. Find $(f^{-1})'(3)$.
- (c) (7%) Find $\frac{d}{dx}x^x$.

4. Let
$$f(x, y) = \ln \sqrt{x^2 + y^2}$$
.

- (a) (5%) Find the level curve of f(x, y) = 0.
- (b) (7%) Find $\nabla f(1,-2)$, the gradient of f(x,y) at (1,-2).
- (c) (8%) Show that $f_{xx}(x, y) + f_{yy}(x, y) = 0$.
- 5. Evaluate the following integrals.

(a) (8%)
$$\int \frac{x+1}{x^3+x} dx$$

(b) (7%)
$$\int_{0}^{\infty} x^2 e^{-2x} dx$$

(c) (8%)
$$\iint_R xydA$$
, where R is the region bounded by $y = x^2$ and $y = \sqrt{x}$.

(d) (7%)
$$\iint_{R} e^{x^2 + y^2} dA$$
, where $R = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.